Elemental characterisation of melanin in feathers via synchrotron X-ray imaging and absorption spectroscopy
نویسندگان
چکیده
Melanin is a critical component of biological systems, but the exact chemistry of melanin is still imprecisely known. This is partly due to melanin's complex heterogeneous nature and partly because many studies use synthetic analogues and/or pigments extracted from their natural biological setting, which may display important differences from endogenous pigments. Here we demonstrate how synchrotron X-ray analyses can non-destructively characterise the elements associated with melanin pigment in situ within extant feathers. Elemental imaging shows that the distributions of Ca, Cu and Zn are almost exclusively controlled by melanin pigment distribution. X-ray absorption spectroscopy demonstrates that the atomic coordination of zinc and sulfur is different within eumelanised regions compared to pheomelanised regions. This not only impacts our fundamental understanding of pigmentation in extant organisms but also provides a significant contribution to the evidence-based colour palette available for reconstructing the appearance of fossil organisms.
منابع مشابه
A Review of the Applications of Synchrotron Radiation in Archaeological Sciences
The scientific research regarding investigation, characterization and protection of the archeological specimens is manifested through a notable participation of multidisciplinary subjects and experts, scientists and archeometrists. One of the main principals which are considered by archaeometrists in the study of the precious specimens is the utilizing nondestructive methods. As an example, in ...
متن کاملNanoparticles and nanowires: synchrotron spectroscopy studies
This paper reviews the research in nanomaterials conducted in our laboratory in the last decade using conventional and synchrotron radiation techniques. While preparative and conventional characterisation techniques are described, emphasis is placed on the analysis of nanomaterials using synchrotron radiation. Materials of primary interests are metal nanoparticles and semiconductor nanowires an...
متن کاملBio-metals imaging and speciation in cells using proton and synchrotron radiation X-ray microspectroscopy.
The direct detection of biologically relevant metals in single cells and of their speciation is a challenging task that requires sophisticated analytical developments. The aim of this article is to present the recent achievements in the field of cellular chemical element imaging, and direct speciation analysis, using proton and synchrotron radiation X-ray micro- and nano-analysis. The recent im...
متن کاملDetermination of the elemental distribution and chemical speciation in highly heterogeneous cementitious materials using synchrotron-based micro-spectroscopic techniques
Synchrotron-based micro-X-ray fluorescence (XRF) combined with scanning electron microscopy-based energy dispersive micro-analysis (EDS) has been used to determine the elemental distribution of contaminants (e.g., Ni) and of chemical elements inherent to the cement matrix (e.g., Si, Ca, Al, S) in hardened cement paste. Detailed information on the cement microstructure was gained by using backsc...
متن کاملSpatially Resolved Elemental Analysis, Spectroscopy and Diffraction at the GSECARS Sector at the Advanced Photon Source.
X-ray microprobes (XRM) coupled with high-brightness synchrotron X-ray facilities are powerful tools for environmental biogeochemistry research. One such instrument, the XRM at the Geo Soil Enviro Center for Advanced Radiation Sources Sector 13 at the Advanced Photon Source (APS; Argonne National Laboratory, Lemont, IL) was recently improved as part of a canted undulator geometry upgrade of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016